Identification of tumor-reactive T cells targeting melanoma Dark Antigens™ validates this novel class of targets for development of immunotherapies

Rachel Abbott^{1*}, Tom Hofland^{2^}, Thomas M. Hulen^{3^}, Elizabeth M. E. Verdegaal^{4^}, Michael D. Crowther³, Shawez Khan³, Pita de Kok⁴, Emily Tye¹, Marten Visser⁴, Katarzyna Ward¹, Sjoerd H. van der Burg^{4*}, George Kassiotis^{2*}, Inge Marie Svane^{3*}, Joseph Dukes^{1*}

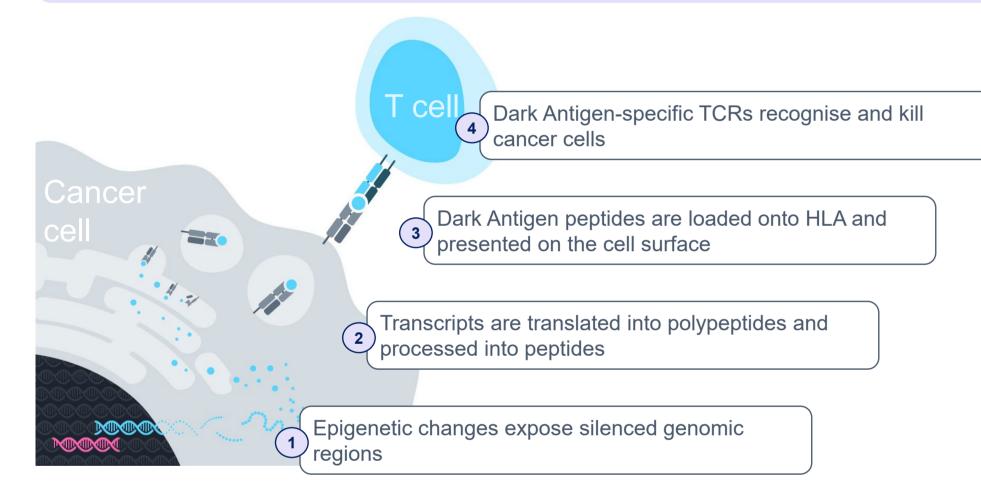
CCIT

DENMARK

¹ Enara Bio Ltd., Oxford, U.K.

² The Francis Crick Institute, London, U.K.

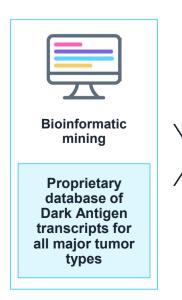
³ National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark,

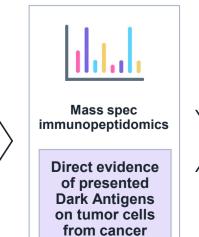

⁴ Department of Medical Oncology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands.

[^] Joint primary author *Corresponding author

Dark Antigens™: Novel, shared, tumor-specific targets for immunotherapy

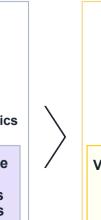
- Dark Antigens are a differentiated source of shared, tumor-specific antigens derived from genomic dark matter
- Putative Dark Antigen-encoding transcripts and open-reading frames (ORFs) can be found in all major solid tumor types
- Epigenetically regulated present across solid tumors independent of tumor mutation burden
- Shared across patients and tumor types broader potential patient population than conventional tumor-associated antigens
- High degree of intratumoral homogeneity attractive feature for targeted immunotherapies

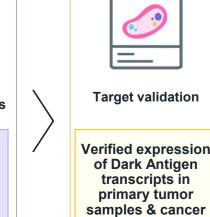

Dark Antigens enable multiple HLA-targeting opportunities that are lacking with neoantigen-directed immunotherapies

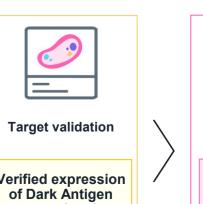


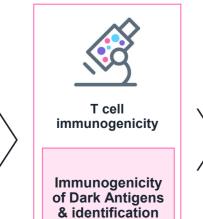
EDAPT™ pipeline for Dark Antigen discovery and validation

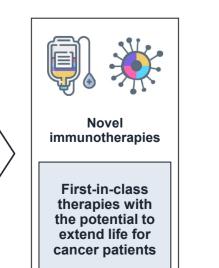
- Enara Bio's EDAPT (Enara Dark Antigen Platform Technology) platform probes the genomic dark matter to discover shared novel, cancer-specific antigens with validated presentation on Class I HLA of primary tumors
- Using our platform, we previously identified a number of melanoma-specific antigens, demonstrated their presentation on Class I HLA in primary tumors with mass spectrometry-based immunopeptidomics, and validated their cancer-specificity and homogenous tumor expression [1-2]

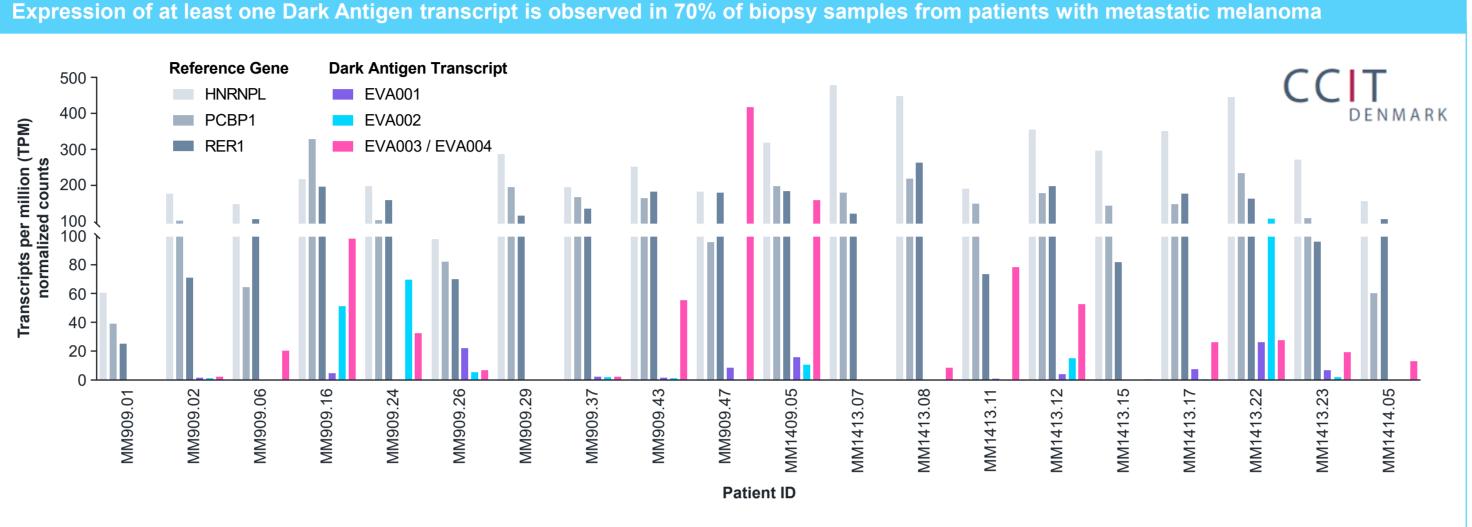

cell lines

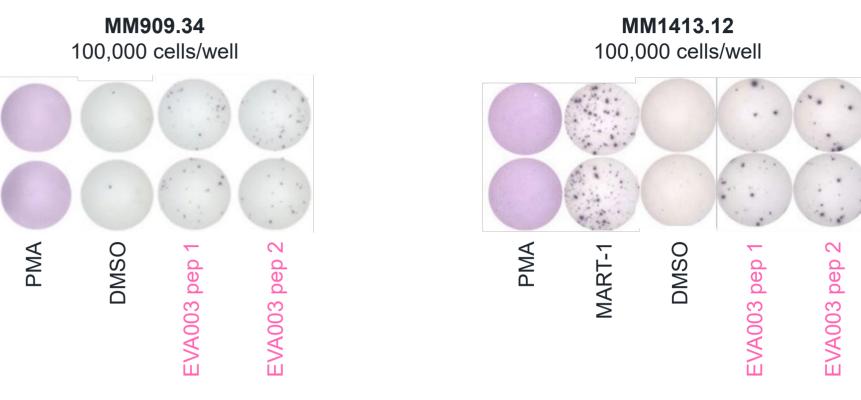




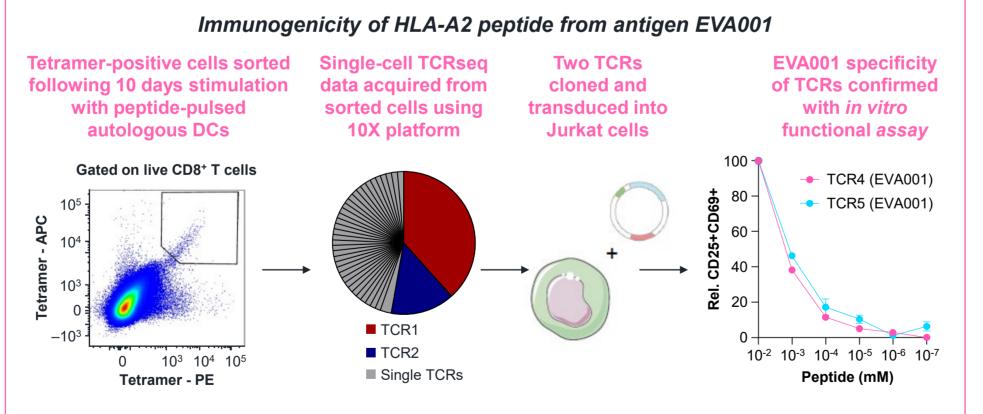

patients






of cognate TCRs

- Expression of transcripts encoding antigens EVA001, EVA002 and EVA003 / EVA004 was assessed in biopsy samples from 20 patients with metastatic melanoma via RNAseq analysis
- Samples from 14 of the 20 patients (70%) show expression of at least one of the three antigen-encoding transcripts (TPM > 5)
- The most prevalent transcript encodes two distinct melanoma-specific antigens, EVA003 and EVA004


Tumor infiltrating lymphocytes (TILs) from patients with metastatic melanoma contain T cells reactive to mass spec-validated Dark Antigen peptides

- TILs from two of these four donors (MM909.34 and MM1413.12) are activated by two mass spec-validated, HLA-A*03:01-restricted peptides, demonstrating presence of Dark Antigen-reactive T cells in TIL
- RNAseq analysis of available primary tumor material (MM1413.12) confirms that this tumor is positive for expression of the EVA003/EVA004 transcript (data shown in panel to left)

Dark Antigen reactive T cells are found within peripheral blood mononuclear cells (PBMCs) from healthy donors

- Ten days later, antigen-specific T cells were sorted using peptide-HLA (pHLA) tetramers
- T cell receptors (TCR) sequences, obtained from antigen-reactive isolated T cells using 10X Genomics, were transduced into Jurkat cells for functional assessment
- Data shared here shows identification of two TCR sequences with clear reactivity to THE FRANCIS CRICK INSTITUTE an HLA-A*02:01 restricted peptide from EVA001, as measured by CD25 and CD69 upregulation in response to a peptide titration on T2 antigen presenting cells

Immunogenicity of HLA-B7 peptide from antigen EVA003 T cell clone EN16.5 T cell clone EN16.5 T cell clone EN16.5 **Response to Target Cells Tetramer Stain Peptide Titration** Gated on CD3+ CD8+ T cells 97.9 1.31 10³ - 0.77 2.0 1.5 1.0 0.5 0.0 $-10^3 \ 0 \ 10^3 \ 10^4 \ 10^5$ + 0.25 ug 05.18 13.11 13.14 Peptide (µg) Tetramer - PE

Healthy donor PBMCs were assessed directly ex vivo for the presence of antigen-specific T cells using pHLA tetramers

- T cells that were dual stained with PE and APC pHLA tetramers were single cell and/or bulk sorted and rapidly expanded in the presence of peptide to generate (poly)clonal cultures
- Following expansion, pHLA tetramer staining was repeated and the function of the T cell cultures was assessed in IFNγ ELISAs measuring response to peptide titration and patient-derived melanoma lines
- Data shared here shows characterisation of T cell clone EN16.5 with clear specificity for an HLA-B*07:02 restricted epitope from EVA003

T cells that are reactive against epitopes derived from novel, melanoma-specific Dark

Conclusions

- Antigens have been identified in both patient TILs and peripheral blood of healthy subjects, supporting their relevance as cancer-specific antigens
- TCRs isolated from these T cells are currently being assessed for reactivity against antigen-positive, patient-derived, melanoma tumor lines
- This work highlights the promise of Dark Antigens as a novel class of targets for the development of targeted immunotherapies such as cancer vaccines, TCR-T cell and bi-specific T cell engager therapies
- Our EDAPT platform is now being employed to identify Dark Antigen targets in a range of other tumor types

Ethics Approval

All work involving the use of human tissue was approved by the NHS Health Research Authority Northwest Haydock Research Ethics Committee (reference number 19/NW/0216), London Bridge Research Ethics Committee (reference number 20/PR/0400), and the Medical Ethics Committee of the Leiden University Medical Center (reference number P04.085). The use of patient material at CCIT-DK as described was approved by the Ethics Committee of the Capital Region of Denmark and national regulations for biomedical research.

References

LEIDEN UNIVERSITY MEDICAL CENTER

Attig, J., et al. LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Research. 2019; 29:1578-1590.

. Jupp, R., et al. Discovery of immunogenic ERV-derived antigens as targets for melanoma immunotherapy. Society for Immunotherapy of Cancer (SITC) 34th Annual Meeting. 2019; P680

